

Advanced Energy Saving Compressed Air Filters

300 SERIES

> Deltech

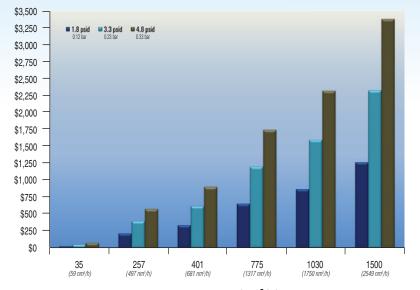
Sustainable Filtration Solutions

Energy costs continue to escalate globally, having a negative impact on plant profitability and production costs. Sustainability initiatives in plant operations must be implemented to maintain a competitive advantage.

Air treatment manufacturers are challenged to design equipment that is cost effective, delivers optimum performance and consumes less energy. The Deltech 300 Filter Series is the ideal solution to remove contamination from compressed air systems and save energy. The 300 Series employs technological advancements in filtration materials and design to ensure premium compressed air quality and low operational costs.

Filters are tested and rated in accordance to ISO 12500 delivering certifiable performance in accordance to ISO 8573.1: 2009 air quality standards.

Save Money, Save Energy


The development of sustainable compressed air treatment solutions is the driving principle behind Deltech product designs. The 300 Series provides the perfect balance between high performance filtration and low pressure drop.

Patented filter elements (US 7,618,480 B2) maintain low pressure drop throughout its

service life.

The economic service life of a filter is influenced by differential pressure. By minimizing resistance to flow, energy costs are significantly reduced.

The example demonstrates the effect of pressure drop on operating costs.

Flow scfm (nm³/h)

Example:

- · Model: 315-H3 high efficiency coalescing filter
- Hours of Operation: 8000 hours
- · Power Cost: \$0.10/kWh
- Cost of Pressure Drop: \$870/yr
- Flow: 1030 scfm (1750 nm3/h)
- Operating Pressure: 101.5 psig (7 bar)
- Pressure Drop: 1.8 psid (0.12 bar)

Under identical operation conditions, conventional filters maintain a higher cost of ownership:

- Pressure Drop: 3.3 psid (0.23 bar)
- Cost of Pressure Drop: \$1596/yr
- Pressure Drop: 4.8 psid (0.33 bar)
- Cost of Pressure Drop: \$2321/yr

ISO Air Quality Standards

ISO 12500

ISO 12500 defines a universal method for manufacturers to test and rate compressed air filters. Critical performance parameters are specified for inlet oil challenge and solid particulate concentration.

- ISO 12500-1 defines the testing of coalescing filters for oil aerosol removal performance.
- ISO 12500-2 quantifies vapor removal capacity of adsorption filters.
- ISO 12500-3 outlines requirements to test particulate filters for solid contaminant removal.

The 300 Series is tested to ISO 12500. Test results provide certifiable performance data based on defined challenge concentrations.

S	300 Series	Filtratio	n Perfo	rmance		
	Element Grade	S 3	P3	Н3	U3	C3
	*Particle Retention Size (Per ISO 12500-3)	3.0 <i>µ</i> m	1.0 <i>µ</i> m	0.01 <i>μ</i> m	0.01 <i>µ</i> m	0.01 <i>μ</i> m
	Particle Removal Efficiency (Per ISO 12500-3)	-	99.999+%	99.999+%	99.9999+%	99.999+%
	Oil Removal Efficiency (Per ISO 12500-1)	50%	80%	99.9+%	99.99+%	-
	"Remaining Oil Content (Per ISO 12500-1)	5.0 mg/m ³	2.0 mg/m ³	< 0.01 mg/m ³	< 0.001 mg/m ³	< 0.004 mg/m³ (as a vapor)

^{*} Solid particulate size distribution 0.01 to 5.0 μ m

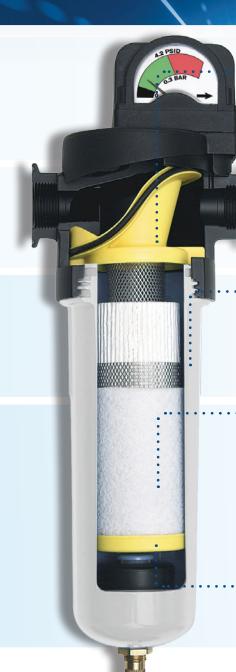
ISO 8573.1: 2009 Air Quality Standard

ISO 8573, the international standard for compressed air quality, defines the amount of contamination permissible in compressed air.

- The standard identifies three primary forms of contamination in compressed air systems - solid particles, water and oil.
- Contaminants are classified and assigned a quality class, ranging from Class 0, the highest purity level, to Class 9, the most relaxed

Element Grade	ISO Quality Class Solids	ISO Quality Class Oil
S 3	3	5
P3	2	4
Н3	1	1
U3	1	1
C3	1	1
		(as a vapor)

Deltech's 300 Series elements are performance validated to ISO 12500 ensuring air quality delivered is in accordance to ISO 8573.1; 2009 classifications


		Solid Particles		Humidity	and Water	Oil		
Air Quality Classes ISO 8573.1		n number of particl Particle size (d), µn		Maximum Pres	ssure Dew Point	Maximum Concentration, Aerosol, Liquid and Vapor		
	$0.10 < d \leq 0.5$	$0.5 < d \leqq 1.0$	$1.0 < d \leq 5.0$	°C	°F	mg / m³	ppm w/w	
0		As specified	by the equipment	user or supplier	and more stringe	nt than class 1		
1	≦ 20,000	≦ 400	≦ 10	≦ -70	≦ -94	≦ 0.01	≦ 0.008	
2	≦ 400,000	≦ 6,000	≦ 100	≦ -40	≦ -40	≦ 0.1	≦ 0.08	
3	-	≦ 90,000	≦ 1,000	≦ -20	≦ -4	≦ 1	≦ 0.8	
4	-	-	≦ 10,000	≦ +3	≦ +37	≦ 5	≦ 4	
5	-	-	≦ 100,000	≦ +7	≦ +45			
	N	Mass Concentration C _p (mg/m³)	n					
6		0 < C _D ≤ 5		≦ +10	≦ +50			
				Liquid Water C	Content, C _w g/m³			
7		$5 < C_p \le 10$		C _w ≦	≦ 0.5			
8				0.5 <	$C_{w} \leq 5$			
9				5 < C,	_w ≦ 10			
Х		$C_p > 10$		C _w	> 10	> 5	> 4	
							* Not Specified	

Per ISO 8573.1: 2009

Inlet oil challenge concentration 10 mg/m³

Deltech

The Next Generation of Filtration

Patented Element Design

- The venturi profile promotes a turbulent-free transition for compressed air entering the element
- Optimized flow distribution through the element minimizes pressure loss and reduces system operating cost
- · Unique backside contour assists smooth movement of air exiting the filter housing

Sculpted Design

- Covers flow ranges 20 scfm to 1500 scfm (34 to 2549 nm³/h)
- Flanged inlet and outlet connections make installation easy
- Thirteen flow models, with multiple port sizes 1/4" to 3" NPT, allow for greater application flexibility
- Sculpted housing designs, with large unrestricted flow paths, reduce pressure drop

Safety Built-In

- Die cast aluminium housings provide a cost effective solution in the 1030 to 1500 scfm (1750 to 2549 nm³/h) flow range
- Chromated housings, with a polyester epoxy powder coating for corrosion resistance
- · Internally ribbed bowls facilitate condensate draining
- · Audible alarm when attempting bowl removal under pressure

Deep Bed Pleated, High Performance Media

- Increased effective filtration surface area, reduces pressure drop by 50%
- 96% voids-volume ratio optimizes dirt loading capacity
- · HEPA grade micro fiberglass media maximizes efficiency
- Thermally bonded polyester support layers minimize media migration
- Low wetted pressure for drop for life of the element
- Seam welded, stainless steel inner and outer support cores enhance dimensional stability of the element
- · Chemically inert, non-aging polyester drain layer expedites removal of liquid
- · All materials of construction are silicone free

Element Grade Identification

- Color coded element end caps promote ease of grade identification
- Bottom end caps pad printed with genuine Deltech filter element replacement part number

Optimize your Filtration Needs....

• Filter Clamps, Wall Mount Brackets, Gauges and Condensate Drains Available to maximize performance!

Total System Protection

The 300 Series provides protection for the entire compressed air system. A wide range of filters exceeds customer requirements for ISO Quality Class performance, service life and optimal energy savings.

Compressed air contamination exists in three states- solid, liquid and gaseous.

- Ingested contaminants appear in the form of water, hydrocarbons and particulates.
- The compression process introduces lubricant and wear particles into the system.
- Piping distribution and storage tanks foster contaminants in the form of rust, pipe scale and bacteria.

300 Series Element Specifications

ı	Element Grade	Description	ISO Performance Data	Where Applied	
0	Grade S3	Separator/filter removes	 Removes solids 3 micron and larger Remaining oil content 5 mg/m³ 	Downstream of aftercoolers	
	Bulk Liquid Separator/Filter	bulk liquid and solids.	ISO 8573.1: 2009 Air Quality Class: • Solid Particles - Class 3 • Remaining Oil Content - Class 5	At point-of-use if no aftercooler/ separator used upstream	
				Upstream of ultra high efficiency oil removal filters	P3 U3
	Grade P3 General	General purpose filtration to protect pneumatically	 Removes solids 1.0 micron and larger Remaining oil content 2.0 mg/m³ 	At point-of-use if aftercooler/ separator installed upstream	
	Purpose Filter	operated tools, motors and cylinders.	ISO 8573.1: 2009 Air Quality Class: • Solid Particles - Class 2 • Remaining Oil Content - Class 4	Downstream of heatless desiccant dryers	P3
				Upstream of refrigerated dryers	
		Fine coalescer provides	• Removes 99.999+% of solids 0.01 micron and larger	Upstream of desiccant dryers	H3
	Grade H3 High Efficiency	applications such as spray	• Remaining oil content < 0.01 mg/m³	Downstream of refrigerated dryers	H3
U	Oil Removal Filter	painting, injection molding, instrumentation and control valves.	ISO 8573.1: 2009 Air Quality Class: • Solid Particles - Class 1 • Remaining Oil Content - Class 1	At point-of-use if aftercooler/ separator installed upstream	
		Ultra fine coalescer delivers	• Removes 99.9999+% of solids 0.01 micron and larger	Upstream of desiccant dryers	P3 U3
1	Grade U3 Ultra High Efficiency	oil free air for critical applications including,	• Remaining oil content < 0.001 mg/m ³	Upstream of membrane dryers (Use a PF Grade as a prefilter if heavy liquid	Ų Ų
	Oil Removal Filter	conveying, electronics manufacturing and nitrogen	ISO 8573.1: 2009 Air Quality Class: • Solid Particles - Class 1	loads are present)	U3
		replacement.	Remaining Oil content - Class 1	Downstream of refrigerated dryers	_
	Grade C3	Activated carbon filter removes oil vapor and provides oil free	 Removes solids 0.01 micron and larger Remaining oil content < 0.004 mg/m³ (as a vapor) 	Downstream of high efficiency oil	
	Oil Vapor Removal Filter	air for food and drug manufacturing, breathing air and gas processing.	ISO 8573.1: 2009 Air Quality Class: • Solid Particles - Class 1 • Remaining Oil Content - Class 1	removal filters	OR C3

300 Series Filter Selection

Model Configuration

Housing-Connection-Flow

Model	Connection*	Flow @			
modo		101.5 ps	ig (7 bar)		
	NPT	scfm	nm³/h		
02	1/4"	20	34		
03	3/8"	35	59		
04	1/2"	50	85		
06	3/4"	75	127		
07	3/4"	103	175		
08	1.0"	157	267		
10	1.5"	257	437		
11	1.5"	360	612		
12	2.0"	401	681		
14	2.5"	775	1317		
15	2.5"	1030	1750		
16	3.0"	1200	2039		
17	3.0"	1500	2549		
*BSP threads ar	e available. Add B to the r	model number. Ex	ample 302B-S3-DP		

Element Grade S3 Bulk Liquid Separator/Filter P3 General Purpose Н3

High Efficiency Oil Removal U3 Ultra High Efficiency Oil Removal C3 Oil Vapor Removal

Options

T	Manual Drain
D	Internal Automatic Drain
P1	Differential Pressure Slide Indicator
G1	Differential Pressure Gauge
M	Electronic Filter Monitor
Х	External Drain Adapter
Z1*	Electric Demand Drain (02-12)
Z2 [*]	Electric Demand Drain (14-17)
W	External Mechanical Drain (14-17)

*Z1 and Z2 electric demand drain: Voltage 115 VAC 50-60 Hz

Example: 302-S3-DP1

Flow and Connection: 20 scfm (34 nm³/h); 1/4" NPT Element Grade: S3- bulk liquid removal

Options: Internal automatic drain; differential pressure slide indicator

Capacity Correction Factors

The 300 Series flow capacities are rated per ISO 12500 conditions @ 101.5 psig (7 bar). To size the filter for non-standard conditions, a correction factor must be applied. Table 1 provides correction factors for inlet air pressure.

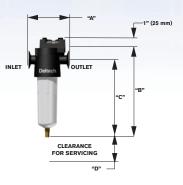
Do not select filters by pipe size; use flow rate and operating pressure.

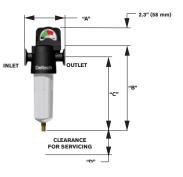
Table 1 - Correction Factors for Inlet Pressure

Inlet Pressure	psig	20	30	40	60	80	100	120	150	200	250
illet Flessure	bar	1.4	2.0	2.8	4.1	5.5	6.9	8.3	10.3	13.8	17.2
Correction Factor		0.30	0.39	0.48	0.65	0.82	1.00	1.17	1.43	1.87	2.31

Adjusted Flow Capacity

To calculate the flow capacity based on non-standard inlet conditions, multiply the filter's rated flow capacity by the corresponding inlet pressure correction factor.


High Efficiency Coalescing Filter: 304-H3-DP1 Rated capacity: 50 scfm (85 nm³/h)


Operating Conditions: 120 psig (8.3 bar) Adjusted Flow Capacity: 50 scfm x 1.17= 59 scfm (100 nm³/h)

300 Series Specifications

Model Number	@ 101	Flow .5 psig bar)	Connections				Dimer	nsions				Wei	ight
				"	Α"	"	3"	"(C"	"I	0"		
	scfm	nm³/h	NPT	in	mm	in	mm	in	mm	in	mm	lbs	kg
302	20	34	1/4"	4.5	114	8.1	206	6.8	173	4.0	102	1.8	0.8
303	35	59	3/8″	4.5	114	8.1	206	6.8	173	4.0	102	1.8	0.8
304	50	85	1/2″	4.5	114	9.9	251	8.5	216	4.0	102	1.9	0.9
306	75	127	3/4"	5.2	132	10.3	262	8.7	221	5.0	127	3.1	1.4
307	103	175	3/4"	5.2	132	10.3	262	8.7	221	5.0	127	3.1	1.4
308	157	267	1.0"	5.2	132	12.8	325	11.7	297	5.0	127	3.5	1.0
310	257	437	1.5″	7.9	201	13.3	338	10.9	277	7.0	178	8.4	3.
311	360	612	1.5"	7.9	201	17.1	434	14.7	373	7.0	178	9.9	4.
312	401	681	2.0"	7.9	201	22.3	566	19.9	505	7.0	178	11.6	5.
314	775	1317	2.5″	9.1	231	24.9	632	21.7	551	8.0	203	18.6	8.
315	1030	1750	2.5″	9.1	231	24.9	632	21.7	551	8.0	203	18.6	8.
316	1200	2039	3.0"	9.1	231	32.2	818	28.9	734	8.0	203	27.7	12.
317	1500	2549	3.0"	9.1	231	42.7	1085	39.4	1001	8.0	203	41.3	18

Technical Specifications

Drain Option	Maximum Operating Pressure	Maximum Operating Temperature	Minimum Operating Temperature
Manual Drain	250 psig (17.6 bar)	150°F (66°C)	35°F (2°C)
Internal Float	250 psig (17.6 bar)	150°F (66°C)	35°F (2°C)
Electric Demand	232 psig (16.0 bar)	140°F (60°C)	35°F (2°C)
Externally Mounted Mechanical	150 psig (10.3 bar)	120°F (49°C)	35°F (2°C)

300 Series Pressure Drop Performance*

EI	ement Grade	Filter Description	Dry ∆p		Wetted ∆p	
			psig	bar	psig	bar
	S 3	Bulk Liquid Separator/Filter	0.8	0.06	1.0	0.07
Q	Р3	General Purpose Filter	0.6	0.04	1.4	0.10
	Н3	High Efficiency Oil Removal Filter	0.6	0.04	1.8	0.12
N. Contraction	U3	Ultra High Efficiency Oil Removal Filter	0.8	0.06	2.0	0.14
	C3	Oil Vapor Removal Filter	1.0	0.07	-	

Global locations

USA

SPX FLOW TECHNOLOGY

1000 Philadelphia Street

Canonsburg, PA 15317-1700 U.S.A.

P: (724) 745-8647

F: (724) 745-4967

E: deltech.inquiry@spx.com

CANADA

SPX FLOW TECHNOLOGY CANADA

1415 California Avenue

Brockville, on, Canada, k6v 7h7

P: (800) 267-3884

F: (724) 745-4967

E: salescanada@spx.com

EMEA

SPX FLOW TECHNOLOGY MOERS GMBH

Konrad-Zuse-Straße 25 D-47445 Moers, Germany P: +49 (0) 28 41 / 819-0 F: +49 (0) 28 41 / 87112

E: csc@dehydration.spx.com

Based in Charlotte, North Carolina, SPX Corporation (NYSE: SPW) is a global Fortune 500 multi-industry manufacturing leader. For more information, please visit www.spx.com

SPX FLOW TECHNOLOGY

SPX Flow Technology 1000 Philadelphia Street Canonsburg, PA 15317-1700 U.S.A. www.deltech-spx.com www.spx.com

P: (724) 745-8647

F: (724) 745-4967

E: deltech.inquiry@spx.com

SPX reserves the right to incorporate our latest design and material changes without notice or obligation.

Design features, materials of construction and dimensional data, as described in this bulletin, are provided for your information only and should not be relied upon unless confirmed in writing. Please contact your local sales representative for product availability in your region. For more information visit www.spx.com.

The green ">" is a trademark of SPX Corporation, Inc.

ISSUED 06/2012 300 Series

COPYRIGHT © 2012 SPX Corporation